2017河南事业单位考试行测技巧之逻辑判断真话假话
真话假话,把这类考题根据题目的表现形式归结为真话假话型,这是一种通俗的说法,其本质是涉及了逻辑基本规律(同一律、矛盾律、排中律)。解决这类问题的突破口往往是运用对当关系及复合命题推理等逻辑知识在所有叙述中找出有互相矛盾的判断,从而必知其一真一假。
下列两个性质命题是互相矛盾的:
1.“所有S是P”与“有些S不是P”
2.“所有S不是P”与“有些S是P”
下列两个模态命题是互相矛盾的:
1.“必然p”与“可能非p”
2.“不可能p”与“可能p”
要注意的是:有时两个命题虽然不是矛盾的,但互相反对(或下反对),即不能同真(或不能同假),那就可以推出两个判断中至少有一个是假的(或者至少有一个是真的),这也同样可以成为解题的关键。
复合命题的矛盾关系要复杂些,考生要注意下列两个复合命题是互相矛盾的:
1.“p并且q”与“非p或者非q”。
2.“p或者q”与“非p并且非q”。
3.“要么p,要么q”与“p并且q”或者“非p并且非q”。
4.“如果p,那么q”与“p并且非q”。
5.“只有p,才q”与“非p并且q”。
6.“当且仅当p,才q”与“p并且非q”或者“非p并且q”。
真话假话类题型的解题基本思路主要有两种:一是用矛盾(或反对)法,具体做法是从题干提供的所有判断中,找到两个矛盾(或反对)的判断,从而知其真假关系,进一步可推理出答案;二是用假设反证法,有的貌似真话假话型题没有矛盾的判断,只能用假设反证法,这种方法虽然显得笨些,却很有实效。 值得注意的是,因为在最初的考试中多次出现此题型,但在近来的考试中出现的次数已明显减少。不过,考生仍应多加戒备,因为此类考题实在是容易命题。
例1:学校在为失学儿童义捐活动中收到两笔没有署真名的捐款,经过多方查找,可以断定是周、吴、郑、王中的某两位捐的。经询问,周说:“不是我捐的”;吴说:“是王捐的”;郑说:“是吴捐的”;王说:“我肯定没有捐”。
最后经过详细调查证实四个人中只有两个人说的是真话。
根据已知条件,请你判断下列哪项可能为真?
A.是吴和王捐的。
B.是周和王捐的。
C.是郑和王捐的。
D.是郑和吴捐的。
E.是郑和周捐的。
【答案】C。
【解题分析】吴和王的断定是互相矛盾的,因此,其中必有一真,且只有一真。又由题干,只有两人说的是真话,因此,周和郑两人中有且只有一个人说真话。假设郑说真话,周说假话,则可得出:吴和周捐的款;假设周说真话,郑说假话,则可得出:周和吴都没捐,因而是郑和王捐的。这两种假设都没导致矛盾。因此,根据题干的条件,有关四人中哪两个捐款,有且只有两种情况可能为真:第一,吴和周捐的款,第二,郑和王捐的款。其余的情况一定为假。因此,选项A、B、D和E不可能为真;C项可能为真。
例2:甲、乙、丙、丁四人在一起议论本班同学申请建行学生贷款的情况。
甲说:“我班所有同学都已申请了贷款。”
乙说:“如果班长申请了贷款,那么学习委员就没申请。”
丙说:“班长申请了贷款。”
丁说:“我班有人没有申请贷款。”
已知四人中只有一人说假话,则可推出以下哪项结论?
A.甲说假话,班长没申请。
B.乙说假话,学习委员没申请。
C.丙说假话,班长没申请。
D.丁说假话,学习委员申请了。
E.甲说假话,学习委员没申请。
【答案】E。
【解题分析】经典题目。只有一个说假话的限定,给出了解此类题目的一条捷径,就是去寻找两个互相矛盾的命题,这样其中就必然有一真一假。本题中,甲和丁就是矛盾的说法。这时,可以假设甲为真,再看乙和丙的话,乙显然与甲矛盾,则乙也为假,这时假话就不唯一了,因此甲所说必然为假。在“甲说假话”的两个选项中,如果是A,则丙所说为假,矛盾,故选E。